SEPOY.net
No Result
View All Result
Tuesday, June 17, 2025
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
No Result
View All Result
SEPOY.NET
No Result
View All Result
Home Health

Regulatory T cell populations descend from two different origins, finds study

Nicholas by Nicholas
April 8, 2023
in Health
0
Regulatory T cell populations descend from two different origins, finds study

A regulatory class of human T cells descends from two different origins, one that relates to autoimmunity and one that relates to protective immunity, according to a new study led by Children’s Hospital of Philadelphia (CHOP). The findings, published today in Science Immunology, could pave the way for new treatments for autoimmune diseases that target the immune system selectively.

READ ALSO

Aging family physician workforce challenges primary care in Ontario

Supermarket ads push junk food for toddlers and infants

When it comes to autoimmunity, the prevailing wisdom has been that the only way to stop inflammation is to suppress the immune system broadly, making patients more susceptible to infection. However, that is only true if all T cells come from the same place. What this study shows is that there are two different T cell lineages, which means you might be able to have your cake and eat it too – suppressing inflammation due to autoimmunity while allowing T cells that fight infection to thrive.”


Neil D. Romberg, MD, senior author, attending physician in the Division of Allergy and Immunology at Children’s Hospital of Philadelphia

Germinal centers (GCs) are spherical collections of cells inside tonsils, lymph nodes, and the spleen that orchestrate interactions between T follicular helper (Tfh) cells and B cells. The action within these GCs is locally governed by FOXP3+ T follicular regulatory (Tfr) cells. Although the proper function of Tfr cells is likely important to immunologic health – and their dysfunction a potential contributor to various disease states – few studies have assessed the biologic roles of human Tfr cells and none have addressed where they come from or how they develop within tissues.

To solve this problem, the researchers, led by Carole Le Coz, PhD, a former postdoctoral researcher in the Romberg Lab, used a combination of computational, in vitro, and in vivo techniques to describe the origins, functions, and positions of Tfr cells within GCs. Since GCs are located in secondary lymphoid tissues like lymph nodes, spleens, and tonsils, the researchers analyzed tonsils that had been removed from healthy donor patients.

Using an interlocking suite of single cell technologies, the researchers were able to show that there is one subpopulation of Tfr cells that is induced by Tfh cells, which they called iTfrs, and another subpopulation that were “naturally” derived from Tregs, a subpopulation of T cells that are responsible for moderating the immune system, which they called nTfrs. In doing so, the demonstrated that there are two developmental trajectories: Treg-to-nTfr and Tfh-to-iTfr.

Once the researchers identified these two subpopulations of Tfr cells, they analyzed whether these two regulatory T cells express the surface protein CD38 differently. They found that iTfr cells express CD38, whereas nTfr cells do not. They were also able to catalogue the precise location of these different subpopulations within the GCs, in addition to demonstrating their developmental path and ability so support B cell function.

“This study raises the question of whether we could selectively deplete iTfr cells through anti-CD38 treatments, while leaving nTfrs intact – using a silver bullet rather than a bomb to target specific T cells,” Dr. Romberg said. “A similar approach could also potentially be used in a therapeutic context to boost immunity in patients with weakened immune systems.”

Source:

Children’s Hospital of Philadelphia

Journal reference:

Le Coz, C., et al. (2023) Human T follicular helper clones seed the germinal center–resident regulatory pool. Science Immunology. doi.org/10.1126/sciimmunol.ade8162.

Tags: AllergyAutoimmunityCancerCellChildrenHospitalImmune SystemimmunityImmunologyInfectious DiseasesInflammationLymph NodesResearch

Related Posts

Aging family physician workforce challenges primary care in Ontario
Health

Aging family physician workforce challenges primary care in Ontario

June 17, 2025
Supermarket ads push junk food for toddlers and infants
Health

Supermarket ads push junk food for toddlers and infants

June 17, 2025
Estrogen-responsive cells found to heighten gut pain in females
Health

Estrogen-responsive cells found to heighten gut pain in females

June 17, 2025
First patient treated in international clinical trial for rare muscle-weakness disease
Health

First patient treated in international clinical trial for rare muscle-weakness disease

June 16, 2025
Paternal mental health found to impact child development
Health

Paternal mental health found to impact child development

June 16, 2025
Two existing medications work effectively together in treating alcohol use disorder
Health

Two existing medications work effectively together in treating alcohol use disorder

June 16, 2025
Next Post
New finding in roundworms upends classical thinking about animal cell differentiation

New finding in roundworms upends classical thinking about animal cell differentiation

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

About

Sepoy.net is a perfect place for people who want daily updates on news related to business, technology, entertainment, health, cryptocurrency etc.

Contact: hello@sepoy.net

Major Categories

News

Business

Tech

Economy

 

Recent Posts

  • Black-jack download gate777 app Wikipedia
  • EUR un doscientos, 220 tiradas gratuito sobre Bonos
  • Wheres the brand new Silver Casino slot games Play for Free Online game from the Aristocrat

Pages

  • About Us
  • Contact Us
  • Disclaimer
  • DMCA
  • Home
  • Privacy Policy

© 2023 Sepoy.net

No Result
View All Result
  • Home
  • Business
  • News
  • Health
  • Tech
  • Science
  • Lifestyle
  • Travel

© 2023 Sepoy.net