SEPOY.net
No Result
View All Result
Monday, July 7, 2025
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
No Result
View All Result
SEPOY.NET
No Result
View All Result
Home Health

Scientists explore brainstem circuits to find nausea intervention strategies

Nicholas by Nicholas
June 20, 2022
in Health
0

In a recent study published in Cell, researchers uncovered the organization of nausea-associated brainstem circuits to show that selectively blocking the excitatory neurons responsive to nausea-promoting growth/differentiation factor 15 (GDF15) suppresses nausea-related behaviors.

READ ALSO

Cysteine plays key role in weight loss and fat metabolism

Reversing immune fatigue offers new hope for cancer treatment

Study: A brainstem circuit for nausea suppression. Image Credit: Krakenimages.com/Shutterstock

Background

Nausea is an unpleasant and discomforting sensation of visceral malaise that remains poorly understood at the molecular and cellular levels. Hence, it is challenging to develop effective drug targets for nausea intervention.

Several visceral poisons induce the sensation of nausea through the area postrema, a minuscule sensory organ in the brainstem that detects blood-borne factors, such as the gut hormone glucose insulinotropic peptide (GIP). Notably, GIP activates inhibitory neurons that project locally from the area postrema eliciting inhibitory currents in nausea-promoting excitatory neurons through g-aminobutyric acid (GABA) receptors. Moreover, GIP blocks behavioral responses to visceral poisons in the area postrema.

Genetic approaches, such as single-cell complementary deoxyribonucleic acid (cDNA) sequencing, have provided a cellular atlas of the area postrema. They revealed that the area postrema has four excitatory and three inhibitory neuron types.  One of its excitatory neuron type expresses multiple receptors for nausea-inducing stimuli, including the GDF15 receptor (GFRAL), the calcium-sensing receptor (CaSR), and the glucagon-like peptide 1 (GLP1) receptor (GLP1R).

While in humans, GFRAL, GLP1R, and CaSR agonists cause nausea or vomiting, in small animals, such as mice, which cannot vomit, GFRAL evokes conditioned flavor avoidance in which simultaneous administration of poison and a novel flavor makes mice avoid that flavor in the future. This makes GFRAL neurons a key node in nausea circuits.

About the study

In the present study, the authors hypothesized that at least some of the area postrema inhibitory neurons suppress the activity and function of nausea-promoting excitatory neurons and poison responses and used channelrhodopsin (ChR2)-assisted circuit mapping (CRACM) to study the connectivity patterns of area postrema inhibitory neurons.

They injected area postrema of Gad2-ires-Cre, Rosa26-lsl-L10GFP mice with an adeno-associated virus (AAV) containing a cyclic recombinase (Cre)-dependent ChR2-mCherry allele. The researchers performed histological analysis of mCherry expression to confirm proper AAV targeting of the area postrema in every animal post hoc. Note that Gad2-ires-Cre mice have Cre recombinase expression directed to glutamate decarboxylase 2 (GAD2) positive neurons.

The team measured post-synaptic responses in area postrema excitatory neurons in mice. They also observed the consequences of activating area postrema inhibitory neurons using chemogenetic approaches deploying the synthetic agonist clozapine-N-oxide (CNO).

Further, the researchers established a behavioral paradigm in mice to study conditioned flavor avoidance. To this end, they gave water-restricted mice some cherry- or grape-flavored saccharin solution on the conditioning day. Then, they injected mice with saline (control), poisons, and CNO. They used a two-choice assay to measure the behavioral preference of the test animals.

Finally, the team obtained gastric inhibitory polypeptide receptor (GIPR)-Cre mice and used two-color expression analysis to validate the efficient targeting of cluster six area postrema neurons which mediate GIP-induced anti-nausea effects.

Study findings

Whole-cell recordings in area postrema tissue slices revealed light-gated currents in mCherry-positive inhibitory neurons. The authors observed a reduction in the frequency of post-synaptic responses in 27% of area postrema inhibitory neurons and 38% of excitatory neurons in the adjacent nucleus of the solitary tract (NTS) regions. Further, 89% of excitatory neurons displayed light-evoked inhibitory post-synaptic currents (IPSCs). Furthermore, they noted optogenetic activation produced large outward chloride currents in area postrema excitatory neurons. Together, these findings indicated that a majority of area postrema excitatory neurons formed functional connections with some NTS excitatory neurons.

CNO-induced proto-oncogene, AP-1 transcription factor subunit (Fos) expression in mCherry-labeled area postrema inhibitory neurons validated that in the absence of induction of nausea, mice displayed a modest preference for the experienced flavor, including cherry and grape. Conversely, they showed behavioral avoidance for the previously experienced flavors when evoked by various poisons and the GFRAL agonist GDF15.

CNO silenced GDF15 responses in mice but had no effect in control mice, in the presence and the absence of poisons. These findings indicated that at least some area postrema inhibitory neurons inhibit the activity and function of nausea-promoting excitatory neurons. The authors also noted some GIPR-negative cells in the NTS region close by the area postrema, which may have resulted from transient GIPR expression, too low to detect via ribonucleic acid (RNA) in situ hybridization.

Conclusions

The study established GIPR neurons and area postrema inhibitory neurons cluster six as the pharmacological target for suppressing behavioral responses to at least some nausea-inducing toxins. The human body releases GIP after eating calorie-rich foods containing small amounts of harmful chemicals.

To summarize, area postrema located brainstem circuits could inform decision regarding diets for those experiencing nausea based on reward, need, and toxin risk.

Tags: BloodCellGeneticGlucoseHormoneNauseaNeuronNeuronsReceptor

Related Posts

Cysteine plays key role in weight loss and fat metabolism
Health

Cysteine plays key role in weight loss and fat metabolism

July 7, 2025
Reversing immune fatigue offers new hope for cancer treatment
Health

Reversing immune fatigue offers new hope for cancer treatment

July 7, 2025
Flavonoid diversity, not just quantity, drives better health outcomes
Health

Flavonoid diversity, not just quantity, drives better health outcomes

July 7, 2025
Preeclampsia in pregnancy reduces risk of some cancers but raises endometrial cancer odds
Health

Preeclampsia in pregnancy reduces risk of some cancers but raises endometrial cancer odds

July 7, 2025
Ireland's first and only BioBrillouin microscope installed at Trinity College Dublin
Health

Ireland's first and only BioBrillouin microscope installed at Trinity College Dublin

July 5, 2025
Planned C-sections linked to increased risk of developing childhood leukemia
Health

Planned C-sections linked to increased risk of developing childhood leukemia

July 4, 2025
Next Post

Cabins and Palaces: Digital Waterloo

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

About

Sepoy.net is a perfect place for people who want daily updates on news related to business, technology, entertainment, health, cryptocurrency etc.

Contact: hello@sepoy.net

Major Categories

News

Business

Tech

Economy

 

Recent Posts

  • Free Ports Gamble 32,178+ american express casino bonus Position Demos No Down load
  • Cysteine plays key role in weight loss and fat metabolism
  • Diamond Mine Luxury: Does pokie evolution this Reputation Meet with the Deluxe Standards?

Pages

  • About Us
  • Contact Us
  • Disclaimer
  • DMCA
  • Home
  • Privacy Policy

© 2023 Sepoy.net

No Result
View All Result
  • Home
  • Business
  • News
  • Health
  • Tech
  • Science
  • Lifestyle
  • Travel

© 2023 Sepoy.net