SEPOY.net
No Result
View All Result
Saturday, June 14, 2025
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
No Result
View All Result
SEPOY.NET
No Result
View All Result
Home Health

Study reveals the underlying mechanism by which TKI cancer drugs cause inflammation

Nicholas by Nicholas
March 17, 2023
in Health
0
Study reveals the underlying mechanism by which TKI cancer drugs cause inflammation

Tyrosine kinase inhibitors are a type of targeted cancer medicine that can attack specific types of cancer cells and prevent them from multiplying. Although these inhibitors, called TKIs, can be very useful in fighting certain cancers, they also cause serious inflammatory side effects that limit their use. A Japanese research team has discovered the underlying mechanism that causes this inflammation.

READ ALSO

Rapid generation of functional blood vessels from human stem cells

SREBP identified as a central regulator of lipid metabolism and disease

This study revealed the underlying mechanism by which the TKIs cause inflammation, and therefore provides the molecular basis that is essential to overcome the inflammatory-based side effects.”


Atsushi Matsuzawa, Professor at the Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University

The team’s findings were published in The Journal of Immunology on February 6, 2023.

These TKIs are essential anticancer drugs. However, the use of TKIs frequently initiates inflammation in the body, such as the lung disease interstitial pneumonitis. From their earlier studies, the team had learned that a representative TKI called Gefitinib (GF) causes lung inflammation. GF is a helpful cancer medication used in treating certain breast, lung, and other cancers. It works by targeting the epidermal growth factor receptors. When the GF is used to treat the cancer, it can also cause inflammation in the patient’s lungs, through the NLRP3 inflammasome. The NLRP3 inflammasome is part of the body’s immune system and plays an important role in innate immunity. But when the NLRP3 inflammasome is improperly activated, it can contribute to the development of a wide range of inflammatory diseases.

Until now, scientists have not fully understood why the NLRP3 inflammasome is activated, but the evidence seems to point to mitochondrial dysfunction. When mitochondria are healthy, they work like batteries, producing energy in the body’s cells. Mitochondrial dysfunction happens when the mitochondria do not work as they should because of disease. In their earlier study, the team learned that the GF activated the NLRP3 inflammasome through mitochondrial damage that led to the interstitial pneumonitis in patients. However, they had not understood how GF initiates the mitochondrial damage and whether or not other TKIs also shared this mechanism.

To conduct their study, the team looked at the tyrosine kinases, those enzymes that work as a kind of “on” and “off” switch in many of the cells’ functions. They specifically studied the Src family kinases, called SFKs. The SFKs are nonreceptor tyrosine kinases that regulate many cell processes. There are 11 types of SFKs in the human genome. Some of these SFKs are in the mitochondria and they play an essential role in the function of the mitochondria. The team found that all the TKIs they tested inhibit the kinase activity of the SKFs in the mitochondria which is responsible for the NLRP3 inflammasome.

The team’s comprehensive analysis of the TKIs they tested revealed that these TKIs act as powerful agonists. In addition, the team observed off-target activity that could contribute to the side effects. “As an important finding, all TKIs we tested share a common off-target activity against the mitochondrial SFKs. Therefore, blocking the access of TKIs to mitochondria is a good way to prevent the inflammation,” said Matsuzawa. They also noted that the other TKIs that do not affect the activity of the mitochondrial SFKs may overcome the inflammatory-based side effects. As another approach, when effective inhibitors of the NLRP3 inflammasome are developed, administering the TKIs at the same time as the NLRP3 inhibitors can counteract the side effects. The team’s results provide insight into both the biological and the clinical significance of the NLRP3 inflammasome and the SFKs.

Looking ahead, the team’s next step is to propose a new approach to avoid the inflammatory-based side effects of TKIs. They hope to lead in the development of new TKIs that do not initiate inflammation.

The research team includes Yuto Sekiguchi, Saya Takano, Takuya Noguchi, Tomohiro Kagi, Ryuto Komatsu, Maoko Tan, Yusuke Hirata, and Atsushi Matsuzawa from the Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.

Source:

Journal reference:

Sekiguchi, Y., et al. (2023) The NLRP3 inflammasome works as a sensor for detecting hypoactivity of the mitochondrial Src family kinases. The Journal of Immunology. doi.org/10.4049/jimmunol.2200611.

Tags: CancerDrugsImmunologyInflammasomeInflammationKinaseLaboratoryMedicineMitochondriaResearchTyrosine

Related Posts

Rapid generation of functional blood vessels from human stem cells
Health

Rapid generation of functional blood vessels from human stem cells

June 14, 2025
SREBP identified as a central regulator of lipid metabolism and disease
Health

SREBP identified as a central regulator of lipid metabolism and disease

June 14, 2025
Advancing precision oncology in intrahepatic cholangiocarcinoma
Health

Advancing precision oncology in intrahepatic cholangiocarcinoma

June 14, 2025
Boosting CAR T cell survival to improve solid tumor therapy
Health

Boosting CAR T cell survival to improve solid tumor therapy

June 13, 2025
UK study finds small proportion of early Alzheimer’s patients suitable for latest treatments
Health

UK study finds small proportion of early Alzheimer’s patients suitable for latest treatments

June 13, 2025
Kennedy’s HHS sent Congress ‘junk science’ to defend vaccine changes, experts say
Health

Kennedy’s HHS sent Congress ‘junk science’ to defend vaccine changes, experts say

June 13, 2025
Next Post
Designer DNA drug could be used to delay paralysis in ALS

Designer DNA drug could be used to delay paralysis in ALS

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

About

Sepoy.net is a perfect place for people who want daily updates on news related to business, technology, entertainment, health, cryptocurrency etc.

Contact: hello@sepoy.net

Major Categories

News

Business

Tech

Economy

 

Recent Posts

  • 8 Part Playgames casino Intruders Streaming Reels Genesis Video slot
  • Introducing the brand new Symbolism inside the Casiqo account login Revelation A bankruptcy proceeding: The good Seed
  • Lucky Days Provision: 100% bis 100

Pages

  • About Us
  • Contact Us
  • Disclaimer
  • DMCA
  • Home
  • Privacy Policy

© 2023 Sepoy.net

No Result
View All Result
  • Home
  • Business
  • News
  • Health
  • Tech
  • Science
  • Lifestyle
  • Travel

© 2023 Sepoy.net