SEPOY.net
No Result
View All Result
Saturday, June 14, 2025
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
  • Home
  • News
  • Business
  • Health
  • Tech
  • Lifestyle
  • Economy
  • Crypto
  • Travel
No Result
View All Result
SEPOY.NET
No Result
View All Result
Home Health

Researchers fabricate first wearable sensor to detect and monitor muscle atrophy

Nicholas by Nicholas
March 17, 2023
in Health
0
Researchers fabricate first wearable sensor to detect and monitor muscle atrophy

Researchers at The Ohio State University have fabricated the first wearable sensor designed to detect and monitor muscle atrophy.

READ ALSO

SREBP identified as a central regulator of lipid metabolism and disease

Advancing precision oncology in intrahepatic cholangiocarcinoma

A condition involving the loss of skeletal muscle mass and strength, muscle atrophy can happen for a variety of reasons, but is typically a side effect of degenerative disease, aging or muscle disuse.

While physicians currently rely on MRI to assess whether a patient’s muscle size and volume have deteriorated, frequent testing can be time-consuming and costly.

However, this new study published in the journal IEEE Transactions on Biomedical Engineering suggests that an electromagnetic sensor made out of conductive “e-threads'” could be used as an alternative to frequent monitoring using MRI.

To validate their work, researchers fabricated 3D-printed limb molds and filled them with ground beef to simulate the calf tissue of an average-sized human subject. Their findings showed that they were able to demonstrate the sensor could measure small-scale volume changes in overall limb size, and monitor muscle loss of up to 51%.

Ideally, our proposed sensor could be used by health care providers to more personally implement treatment plans for patients and to create less of a burden on the patient themselves.”


Allyanna Rice, lead author of the study and graduate fellow in electrical and computer engineering at The Ohio State University

The first known approach to monitoring muscle atrophy using a wearable device, the study builds on Rice’s previous work in creating health sensors for NASA. The space agency is interested in monitoring the health of astronauts in a variety of ways, as spending large amounts of time in space can often have detrimental effects on the human body.

Researchers have spent decades trying to understand and combat these effects, and this study was inspired by the goal of finding solutions to health issues facing astronauts.

For instance, while scientists know that even crew members on short spaceflights can experience up to a 20% loss in muscle mass and bone density, there isn’t much data on what effect living in space for much longer missions could have on their bodies, Rice said.

“Our sensor is something that an astronaut on a long mission or a patient at home could use to keep track of their health without the help of a medical professional,” she said.

But creating a wearable device capable of accurately measuring minute muscle changes in the human body is easier said than done. Rice and her co-author Asiminia Kiourti, a professor in electrical and computer engineering at Ohio State, designed the device to work by employing two coils, one that transmits and one that receives, as well as a conductor made out of e-threads that run along the fabric in a distinct zig-zag pattern.

Though the final product resembles a blood pressure cuff, Rice said it was originally a challenge to find a pattern that would allow for a wide range of changes to the size of the sensor’s loop so it would be able to fit a large portion of the population.

“When we first proposed the sensor, we didn’t realize that we would need a stretchable material until we realized that the person’s limbs were going to be changing,” she said. “We need a sensor that can change and flex, but it also needs to be conformal.”

After some trial and error, they found that while sewing in a straight line would limit the sleeve’s elasticity, a zig-zag pattern was ideal for amplifying it. This same novel pattern is the reason the sensor may be scalable across multiple different body parts or even several locations on the same limb.

Though the wearable is still years away from implementation, the study notes that the next major leap would most likely be to connect the device to a mobile app, one that could be used to record and deliver health information directly to health care providers.

And to improve life for future patients both on Earth and in space, Rice is looking forward to combining the sensor with other kinds of devices for detecting and monitoring health issues, such as a tool for detecting bone loss.

“In the future, we would like to integrate more sensors and even more capabilities with our wearable,” Rice said.

This work was supported by NASA.

Source:

Journal reference:

Rice, A & Kiourti, A., (2023) A Stretchable, Conductive Thread-Based Sensor Towards Wearable Monitoring of Muscle Atrophy. IEEE Transactions on Biomedical Engineering. doi.org/10.1109/TBME.2023.3248959.

Tags: AgingBoneDegenerative DiseaseElectromagneticHealth CaremuscleMuscle AtrophyResearch

Related Posts

SREBP identified as a central regulator of lipid metabolism and disease
Health

SREBP identified as a central regulator of lipid metabolism and disease

June 14, 2025
Advancing precision oncology in intrahepatic cholangiocarcinoma
Health

Advancing precision oncology in intrahepatic cholangiocarcinoma

June 14, 2025
Boosting CAR T cell survival to improve solid tumor therapy
Health

Boosting CAR T cell survival to improve solid tumor therapy

June 13, 2025
UK study finds small proportion of early Alzheimer’s patients suitable for latest treatments
Health

UK study finds small proportion of early Alzheimer’s patients suitable for latest treatments

June 13, 2025
Kennedy’s HHS sent Congress ‘junk science’ to defend vaccine changes, experts say
Health

Kennedy’s HHS sent Congress ‘junk science’ to defend vaccine changes, experts say

June 13, 2025
Prenatal exposure to forever chemicals linked to higher teen blood pressure
Health

Prenatal exposure to forever chemicals linked to higher teen blood pressure

June 13, 2025
Next Post
Study reveals the underlying mechanism by which TKI cancer drugs cause inflammation

Study reveals the underlying mechanism by which TKI cancer drugs cause inflammation

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

About

Sepoy.net is a perfect place for people who want daily updates on news related to business, technology, entertainment, health, cryptocurrency etc.

Contact: hello@sepoy.net

Major Categories

News

Business

Tech

Economy

 

Recent Posts

  • Nuts Gambling enterprise casino Mansion mobile No-deposit Incentive Codes to own Summer 2025 The Incentives
  • 30 crazy bells local casino four PayPal Online game You to Pay Actual money casino Frank bonus 2025 Legit & 100 percent free
  • Beste Mobile Kasino Liste in Teutonia 2025 Traktandum Natel Kasino Spiele

Pages

  • About Us
  • Contact Us
  • Disclaimer
  • DMCA
  • Home
  • Privacy Policy

© 2023 Sepoy.net

No Result
View All Result
  • Home
  • Business
  • News
  • Health
  • Tech
  • Science
  • Lifestyle
  • Travel

© 2023 Sepoy.net